0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Enhancing IoT Data Prediction Accuracy Using Deep Learning and Metaheuristic Algorithms
نویسندگان :
Safoura Ashoori
1
Khadigh Nemati
2
Mohamad hadi Amini
3
1- دانشکده فنی میرزا کوچک صومعه سرا
2- دانشکده فنی حرفه ای میرزا کوچک صومعه سرا
3- دانشکده فنی حرفه ای میرزا کوچک صومعه سرا
کلمات کلیدی :
ffn
چکیده :
Given the increasing volume of data generated by the Internet of Things and the challenges associated with processing and storing this data in cloud environments, it is essential to employ deep learning methods and metaheuristic algorithms to improve the accuracy of stream data prediction. In this study, four different approaches were evaluated for classifying continuous IoT data: Particle Swarm Optimization, Support Vector Machine, the PSO-SVM combination, and a feedforward neural network integrated with PSO. Considering the characteristics of stream data and the need to avoid local optima, the PSO algorithm was utilized to optimize the weights and parameters of the feedforward neural network. Additionally, PSO was combined with SVM to optimize its parameters, achieving an accuracy of 0.71. The combination of FFN with PSO improved the prediction accuracy to 0.73, demonstrating the superior performance of this method compared to others. These results highlight the high potential of combining deep learning and metaheuristic methods in enhancing the classification accuracy of IoT data
لیست مقالات
لیست مقالات بایگانی شده
Unlocking individual motor signatures using feature-based clustering of a graphomotor task
Zinat Zarandi - Amirreza Behmanesh - Mohammad Medhi Ebadzadeh - Thierry Pozzo
Studying the Impact of Artificial Intelligence in the Judicial System
Mahdi Rajaeian - Shadi Chegini
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Potential of machine learning algorithms for predicting the properties of medium-density fiberboard (MDF): preliminary results
Rahim Mohebbi Gargari - Ali Shalbafan - Seyed Jalil Alavi - Maryam Amirmazlaghni - Seyed Hamzeh Sadatnejad - Heiko Thoemen
A Systematic Review of Deep Learning Applications in Parkinson’s Disease Research
Masoud Kaviani - Ahmadreza Samimi - Arman Gharehbaghi - Alireza Jahanbakhsh
A Thorough Analysis of How Chatbots Engage, with Aspects of Customer Experience; An In depth Review
Omid Noori
The Role of Ethics in Autonomous Decision Making: Advancements in Artificial Moral Agents
Fatemeh Ghazali - Touraj BaniRostam - MirMohsen Pedram
Deep Learning in Healthcare: Focusing on Interpretability and Data Quality Challenges for Enhanced Disease Detection
Mahsa Yaghoobi - Abbas Mirzaei - Babak Nouri-Moghaddam
From Nodes to Themes: A Social Network Analysis and Thematic Progress in the field of Biomedical Ontologies
Elaheh Hosseini - Maral Alipour Tehrani - Hadi Zare Marzouni
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.5