0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Reconstruction of ECoG signals in response to visual stimuli using a model based on convolutional and regression networks.
نویسندگان :
Mohammad Amin Lotfi
1
Kimiya ٍEghbal
2
Fateneh Zareayan Jahromy
3
1- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
2- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
3- Biomedical Engineering Department, School of Electrical Engineering Iran University of Science and Technology (IUST) Tehran, Iran
کلمات کلیدی :
Convolutional Neural Networks،electrocorticography،Regressor،vision
چکیده :
The visual system is one of the most sophisticated complex systems in our body, and it plays a crucial role in enabling us to perceive the world around us. When we see images, we send visual information from the eyes to different parts of the brain and various routes transmit visual information and processing. The purpose of this study is to ascertain whether it is possible to reconstruct brain signals directly from visual stimuli using deep neural networks. In order to simulate the visual routes in the brain, we implemented deep neural networks (DNNs) with the objective of predicting the electrocortical data of the whole brain of the Subjects. In this study, we employed an advanced methodology that utilized convolutional neural networks to decode the electrical activity of the brain during the processing of visual data. A convolutional neural network is employed to extract relevant features from the image, which are then fed to a deep regressor for the prediction of the electrocortical data of the subject in that trial. The results demonstrated that brain signals could be reconstructed directly from visual stimuli presented in the trial with acceptable efficiency. Furthermore, neural routes in the brain could be simulated via DNNs. This model could facilitate a deeper understanding of human vision and enhance our comprehension of data processing within the brain.
لیست مقالات
لیست مقالات بایگانی شده
بهبود عملکرد پیشبینی دادههای IOT با رویکرد ترکیبی شبکه عصبی و الگوریتم ژنتیک
محمد هادی امینی - خدیجه نعمتی - صفورا عاشوری
An Overview of the Application of Artificial Intelligence in Schools
Javad Pourkrimi - Zahra Ali Akbari
Split and rephrase: Simple Syntactic Sentences for NLP applications
Mahdi Asghari - Alireza Talebpour - Ghasem Darzi
Title Generation for the Qur'anic chapters by summarizing them
Masoume Maleki - Alireza Talebpour - Mostafa Moradi
The progression of artificial intelligence toward applicability in biomaterial and tissue engineering
Maryam Tamimi - Hamid Mahdavi
Brain Age Classification from fMRI Data Using Graph Neural Networks and Evolutionary Algorithm
Nastaran Hassanzadeh - Mohammad Saniee Abadeh
Creating a Foundation for Dynamic Difficulty Adjustment within PCG of games using Imitation Learning
Navid Siamakmanesh - Arian Ganji - Monireh Abdoos - Mojtaba Vahidi-Asl
Damage Prediction of RC Columns Using Machine Learning Algorithms
Amirali Abdolmaleki - Shima Mahboubi
Attention Mechanisms in Deep Learning for Multiple Sclerosis Classification
Mahdie Azizi hashjin - Mahsa Yaghoobi - Babak Nouri-Moghaddam
Examining the Role of Artificial Intelligence in Enhancing Educational Equity: A Systematic Review
Ali Rahmanipur - Shakila Mohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.4