0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Enhanced Brain Tumor Detection: A Novel CNN Approach Optimized by the Crow Search Algorithm
نویسندگان :
Maryam Moradi
1
Sima Emadi
2
1- دانشگاه آزاد اسلامی واحد یزد
2- دانشگاه آزاد اسلامی واحد یزد
کلمات کلیدی :
Image processing،image segmentation،CNN،metaheuristic optimization algorithms،Crow Search Algorithm
چکیده :
Medical imaging serves as a vital tool for diagnosing various diseases. These images enable doctors to assess conditions with greater accuracy. However, the manual identification and analysis of large amounts of Magnetic Resonance Imaging (MRI) data is challenging and time-consuming. Consequently, there is a critical need for a reliable deep learning (DL) model that can accurately detect brain tumors. Deep learning techniques, such as Convolutional Neural Networks (CNN), have proven to be very effective in identifying brain tumors. Nevertheless, despite their effectiveness, CNNs face several challenges when used for brain tumor detection based on medical imaging, including inadequate extraction of image texture features and reliance on a single classifier in the fully connected layer, which complicates the segmentation process in CNN architecture. In this context, the necessity of employing metaheuristic algorithms arises, which aim to find the optimal solution among existing alternatives. In this study, a novel approach for classifying and segmenting brain tumors using CNN and the Crow Search Algorithm is presented. This algorithm enhances CNN parameters, helping to achieve more accurate results with the best learning rate. Simulation results demonstrate the superiority of this method over the Harris Hawk optimization algorithm.
لیست مقالات
لیست مقالات بایگانی شده
Examining the Role of Artificial Intelligence in Enhancing Educational Equity: A Systematic Review
Ali Rahmanipur - Shakila Mohammadi
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Intermediate Fine-Tuning for Robust Persian Emotion Detection in Text
Morteza Mahdavi Mortazavi - Mehrnoush Shamsfard
بهبود عملکرد پیشبینی دادههای IOT با رویکرد ترکیبی شبکه عصبی و الگوریتم ژنتیک
محمد هادی امینی - خدیجه نعمتی - صفورا عاشوری
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
A Systematic Review of Deep Learning Applications in Parkinson’s Disease Research
Masoud Kaviani - Ahmadreza Samimi - Arman Gharehbaghi - Alireza Jahanbakhsh
Hybrid Deep Learning Models for Cardiovascular Disease Prediction: A Comprehensive Review of Convolution-Transformer Architectures
Ali Azimi Lamir - Masoud Bekravi - Babak Nouri Moghaddam
Computational Complexity of Sentiment Analysis Algorithms in Natural Language Processing
Kiana Karimifard - Mohammad Ghasemzadeh
Development and Validation of the Comprehensive Persian Social Perception Dictionary using a Semi-automated Method
Ali Heirani-Tabas - Pegah Nejat - Mehrnoosh Shamsfard - Sina Mahmudian
A Hybrid Approach for Intrusion Detection in Computer Systems Using Optimized Deep Neural Networks
Yousef Nahi Salman - Maral Kolahkaj
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.5