0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
نویسندگان :
Seyyed Ali Zendehbad
1
Abdollah PourMottaghi
2
Marzieh Allami Sanjani
3
1- دانشگاه آزاد اسلامی واحد مشهد
2- دانشگاه تهران
3- دانشگاه آزاد اسلامی واحد مشهد
کلمات کلیدی :
Attention Mechanism،Clinical Diagnostics،Data Mining،Surface Electromyography،Successive Variational Mode Decomposition
چکیده :
Surface electromyography (sEMG) signals are an important tool for monitoring and measuring muscle activity, rehabilitation, Human-Computer Interaction (HCI) systems, and diagnosis of neurological disorders. However, these signals are often affected by various sources of noise and disturbance during recording, which reduces the integrity, quality of the signal and increases the error of diagnostic applications. Traditional denoising techniques, such as filters and decomposition methods, often fail to handle the non-stationary nature of sEMG, resulting in a loss of essential information. This study introduces a novel denoising technique, Generalized Successive Variable Mode Decomposition (GSVMD), which integrates Successive Variational Mode Decomposition (SVMD), Soft Interval Thresholding (SIT), and attention mechanisms to enhance signal clarity. The proposed method was evaluated using data from twelve healthy subjects and twenty-four stroke patients, demonstrating a higher Signal-to-Noise Ratio (SNR) and lower R-squared (R²) values compared to conventional denoising techniques. Moreover, statistical tests, including paired t-tests and Analysis of Variance (ANOVA), confirmed the significant enhancements achieved by the method, with p-values less than 0.001 and p < 0.05, thereby validating its effectiveness and robustness. GSVMD utilizes data mining to dynamically adjust signal components, ensuring robust denoising without losing critical information. Its reduced dependency on hyperparameters and high computational efficiency make it suitable for real-time clinical applications, providing enhanced accuracy and reliability for neuromuscular assessments.
لیست مقالات
لیست مقالات بایگانی شده
Potential of machine learning algorithms for predicting the properties of medium-density fiberboard (MDF): preliminary results
Rahim Mohebbi Gargari - Ali Shalbafan - Seyed Jalil Alavi - Maryam Amirmazlaghni - Seyed Hamzeh Sadatnejad - Heiko Thoemen
Deep Learning Frailty Model for Heart Failure Survival Prediction
Solmaz Norouzi - Mohammad Asghari Jafarabadi - Ebrahim Hajizadeh - Hossein Khormaei - Nasim Naderi
Exploring AI Techniques in the Identification and Control of Marine Vehicles
Milad Baghban
Reconstruction of ECoG signals in response to visual stimuli using a model based on convolutional and regression networks.
Mohammad Amin Lotfi - Kimiya ٍEghbal - Fateneh Zareayan Jahromy
Examining Ethical Principles in the Development of AI for Environmental Protection with a Focus on Environmental Justice
Maryam Saadaat Nabavi Meybodi
Deep Learning in Eye diseases diagnosis
Mohammad Shojaeinia - Hamid Moghaddasi
Deep Learning in Healthcare: Focusing on Interpretability and Data Quality Challenges for Enhanced Disease Detection
Mahsa Yaghoobi - Abbas Mirzaei - Babak Nouri-Moghaddam
An Overview of the Application of Artificial Intelligence in Schools
Javad Pourkrimi - Zahra Ali Akbari
Comparative Study of Criminal Responsibility of AI in the Legal Framework of Iran and Saudi Arabia
Zahra Meghdadi - Mahdi Pourcheriki
Application of machine learning algorithms in the prediction of the reliability of post-tensioned concrete members
Pooria Poorahad A. - Mahmoud R. Shiravand - Mahtab Ebadati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.4