0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Application of machine learning algorithms in the prediction of the reliability of post-tensioned concrete members
نویسندگان :
Pooria Poorahad A.
1
Mahmoud R. Shiravand
2
Mahtab Ebadati
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
artificial intelligence،machine learning،supervised learning،reliability index،Monte Carlo simulation
چکیده :
The recent progress in artificial intelligence is driven by the advancements in new machine learning (ML) algorithms. The vast application of data-intensive ML methods throughout structural reliability analysis problems has paved the way for researchers to predict structural responses and seismic performances of different structures with minimal human intervention. Supervised ML method is used when labelled data are available. In this study, labelled data are created through finite element method, and reliability indices are calculated based on the Monte Carlo simulation method. The numerical models are built with different aspect and ED bar ratios, and the key parameters are randomly chosen with specified distributions. Hence, supervised learning algorithms are employed to predict the reliability index of self-centering post-tensioned piers. Reliability of post-tensioned concrete members decreases with time due to the prestress loss phenomenon. Therefore, these members cannot fulfill the performance objectives that they were initially designed for. Five ML algorithms are utilized in this paper; (i) linear regression, (ii) random forest, (iii) artificial neural network, (iv) k-nearest neighbors, (v) extreme gradient boosting. The database is divided into testing and training sets R-squared and root mean squared error are considered as the metrics used for the comparison of the ML models. Bayesian search is used for hyperparameter optimization of algorithms. The results indicate that extreme gradient boosting has the finest accuracy. The closeness of performances of testing and training sets indicates that overfitting is avoided.
لیست مقالات
لیست مقالات بایگانی شده
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
Implication of AI programs Alphafold-2 and 3 in Predicting Complex Protein Assemblies: A Case Study on Barnacle Chthamalus malayensis Cement Adhesive Proteins
Hosein Moein - Maryam Azimzadeh - Aida Arezumand
Hybrid Deep Learning Models for Cardiovascular Disease Prediction: A Comprehensive Review of Convolution-Transformer Architectures
Ali Azimi Lamir - Masoud Bekravi - Babak Nouri Moghaddam
Intermediate Fine-Tuning for Robust Persian Emotion Detection in Text
Morteza Mahdavi Mortazavi - Mehrnoush Shamsfard
Deep Learning in Eye diseases diagnosis
Mohammad Shojaeinia - Hamid Moghaddasi
Title Generation for the Qur'anic chapters by summarizing them
Masoume Maleki - Alireza Talebpour - Mostafa Moradi
Enhancing IoT Data Prediction Accuracy Using Deep Learning and Metaheuristic Algorithms
Safoura Ashoori - Khadigh Nemati - Mohamad hadi Amini
Brain Age Classification from fMRI Data Using Graph Neural Networks and Evolutionary Algorithm
Nastaran Hassanzadeh - Mohammad Saniee Abadeh
Microorganisms prediction for superier Enzyme Sequence With Alphafold Software
Melika Arabzadeh - Kimia Maleki - Bijan Bambai - Hossein Azad
Data Mining's Role in Crafting Intelligent Recommender Systems: A Systematic Review
Pourya Rahat - Amir Reza Asnafi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.1.5