0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
A Novel Fixed-Parameter Activation Function for Neural Networks: Enhanced Accuracy and Convergence on MNIST
نویسندگان :
Najmeh Hosseinipour-Mahani
1
Amirreza Jahantab
2
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Activation Function،Deep Learning،Fixed-Parameter،Neural Networks،MNIST Dataset،Nonlinear Function،Gradient Optimization،Vanishing Gradient Problem
چکیده :
Activation functions are essential for extracting meaningful relationships from real-world data in deep learning models. The design of activation functions is critical, as they directly influence the performance of these models. Nonlinear activation functions are commonly preferred since linear functions can limit a model’s learning capacity. Nonlinear activation functions can either have fixed parameters, which are predefined before training, or adjustable ones that modify during training. Fixed-parameter activation functions require the user to set the parameter values prior to model training. However, finding suitable parameters can be time-consuming and may slow down the convergence of the model. In this study, a novel fixed-parameter activation function is proposed and its performance is evaluated using benchmark MNIST datasets, demonstrating improvements in both accuracy and convergence speed.
لیست مقالات
لیست مقالات بایگانی شده
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Faezeh Sarlakifar - Mohammadreza Mohammadzadeh Asl - Sajjad Rezvani Khaledi - Armin Salimi-Badr
Deep Learning in Healthcare: Focusing on Interpretability and Data Quality Challenges for Enhanced Disease Detection
Mahsa Yaghoobi - Abbas Mirzaei - Babak Nouri-Moghaddam
Enhanced Brain Tumor Detection: A Novel CNN Approach Optimized by the Crow Search Algorithm
Maryam Moradi - Sima Emadi
Deep Learning in Eye diseases diagnosis
Mohammad Shojaeinia - Hamid Moghaddasi
Exploring AI Techniques in the Identification and Control of Marine Vehicles
Milad Baghban
Application of machine learning algorithms in the prediction of the reliability of post-tensioned concrete members
Pooria Poorahad A. - Mahmoud R. Shiravand - Mahtab Ebadati
Computational Complexity of Sentiment Analysis Algorithms in Natural Language Processing
Kiana Karimifard - Mohammad Ghasemzadeh
Predictive Modeling of Escherichia coli Growth: The Role of Key Cellular Features
Sajedeh Farahbod - Masoud Tohidfar
Intermediate Fine-Tuning for Robust Persian Emotion Detection in Text
Morteza Mahdavi Mortazavi - Mehrnoush Shamsfard
MQL-NPC: A Modified Q-Learning-based Approach to Design Intelligent Non-Player Character in a Survival Game
Morteza Nalbandi - Athena Abdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.4