0% Complete
صفحه اصلی
/
اولین همایش بین المللی هوش مصنوعی
Early Detection of Congestive Heart Failure in Coronary Artery Disease Patients Using ECG Based Hybrid CNN-LSTM Model
نویسندگان :
Seyyed Ali Zendehbad
1
Farinaz Azari
2
Hadi Dehbovid
3
1- Department of Biomedical Engineering Mashhad Branch, Islamic Azad University Mashhad, Iran.
2- Department of Electrical and Biomedical Engineering University College of Rouzbahan Sari, Iran
3- Department of Electrical Engineering Nour Branch, Islamic Azad University Nour, Iran.
کلمات کلیدی :
Convolutional Neural Network،Congestive Heart Failure،Electrocardiogram،Deep Learning،Long Short-Term Memory
چکیده :
The increasing prevalence of cardiovascular diseases and their associated high mortality rates necessitate the development of robust early detection methods to minimize adverse health outcomes and reduce treatment complications. Among various diagnostic tools, the Electrocardiogram (ECG) is one of the most accessible and cost-effective options. However, manual ECG interpretation is susceptible to human error and is often affected by noise and motion artifacts, making it a time-consuming and potentially unreliable process. Recent advancements in machine learning and deep learning have led to the emergence of automated models for ECG signal classification, significantly improving diagnostic accuracy and efficiency. In this study, we employed a combination of Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) to analyze three classes of ECG data from the PhysioNet database, comprising Congestive Heart Failure (CHF), arrhythmia, and normal sinus rhythm. The proposed hybrid model leverages the temporal sensitivity of LSTM and the spatial feature extraction capability of CNN, achieving a notable diagnostic accuracy of 87.20% for detecting coronary artery disease. The findings demonstrate that integrating LSTM and CNN is highly effective for modeling non-stationary and complex biological signals such as ECG, highlighting its potential for reliable and efficient early diagnosis of CHF.
لیست مقالات
لیست مقالات بایگانی شده
Empowering Businesses through AI: A Strategic Approach to Implementation
Ramin Feizi - Parham Soufizadeh - Kaveh Yazdifard
Enhanced Brain Tumor Detection: A Novel CNN Approach Optimized by the Crow Search Algorithm
Maryam Moradi - Sima Emadi
Split and rephrase: Simple Syntactic Sentences for NLP applications
Mahdi Asghari - Alireza Talebpour - Ghasem Darzi
An Overview of the Application of Artificial Intelligence in Schools
Javad Pourkrimi - Zahra Ali Akbari
Inferring organizational duties from Persian administrative and employment laws using Large Language Models (LLMs) and few-shot learning
Hojjat Hajizadeh Nowkhandan - Mohsen Kahani
A Systematic Review of Deep Learning Applications in Parkinson’s Disease Research
Masoud Kaviani - Ahmadreza Samimi - Arman Gharehbaghi - Alireza Jahanbakhsh
Automated Recognition of Marine Thermal Patterns Using Deep Learning
Alireza Sharifi - Alireza Vafaeinejad
Attention-Based Noise Reduction for Surface-Electromyography: A Novel Method for Enhanced Signal Quality in Clinical Diagnostics
Seyyed Ali Zendehbad - Abdollah PourMottaghi - Marzieh Allami Sanjani
AI Hugs the Theology of Peace, but friendly or backstabbing?
Aliasghar Ahmadi
Potential of machine learning algorithms for predicting the properties of medium-density fiberboard (MDF): preliminary results
Rahim Mohebbi Gargari - Ali Shalbafan - Seyed Jalil Alavi - Maryam Amirmazlaghni - Seyed Hamzeh Sadatnejad - Heiko Thoemen
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.4